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ABSTRACT 
 
 

Lift-off performance in flexure pivot pad and  
 

hybrid bearings.  (December 2008) 
 

David Hunter Mertz, B.S., Trinity University; 
 

B.A., Trinity University 
 

Chair of Advisory Committee: Dr. Dara Childs 
 

Three flexure pivot pad bearings (FPBs) with different preloads are evaluated for 

use in high performance applications by comparing them to a hybrid hydrostatic bearing 

(HHB).  One application of these bearings is in turbopumps for liquid rocket engines.  

To evaluate bearing performance, the lift-off speed of the shaft from the bearing surface 

is experimentally determined.  Experimental data of lift-off are collected using a circuit 

running through the shaft and the designed bearing.  Other methods for measuring lift-

off speeds were attempted but did not yield consistent results.  Water is used as a 

lubricant to simulate a low viscosity medium. 

In comparison to load-capacity-based predictions for FPBs, the experimental 

results showed lower lift-off speeds, higher load capacities, higher eccentricity ratios, 

and lower attitude angles.  The bearings’ predicted load capacity determined lift-off 

speed predictions, but the experimental results show no clear trend relating lift-off speed 

to load capacity.  This was for a range of running speeds, with the design speed defined 

as the final speed in a particular test case.   

At 0.689 bar supply pressure and for a design speed of 3000 rpm, the HHB 

showed greater load capacities and lower eccentricities than the FPBs, but the FPBs had 

lower lift-off speeds and attitude angles.  In fact, the FPBs in the load-between-pad 

orientation outperformed the HHB in the load-on-pocket orientation with lower lift-off 

speeds for the shaft weight-only case.  An increased supply pressure lowered the lift-off 

speeds in the HHB tests.  If the load in the bearing application remains relatively small, a 

FPB could be substituted for an HHB.   
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NOMENCLATURE 

 

Cb   Bearing radial clearance [L] 

Cp   Pad radial clearance [L] 

Cxx, Cxy, Cyx, Cyy Damping coefficients [F-T/L] 

D   Diameter [L] 

E   Modulus of elasticity [M/L2]  

ex, ey   Distance from bearing center [L] 

bxf ,   Force coefficients [F] byf

I   Area moment of inertia [L4] 

θK    Stiffness [F/L] 

Kxx, Kxy, Kyx, Kyy  Stiffness coefficients [F/L] 

L   Length [L] 

m   Bearing preload, see Eq. 2  [dim] 

Mxx, Mxy, Myx, Myy Mass coefficients [M] 

Rb, Rp, Rs  Bearing, pad, shaft radius (respectively) [L] 

T    Temperature [Θ] 

W   Load [F] 

α    Bearing offset [dim] 

β    Web angle measured from leading edge of pad  

xΔ ,    Perturbation displacement in x or y direction [L] yΔ

x&Δ ,   Perturbation velocity in x or y direction [L] y&Δ

x&&Δ ,   Perturbation acceleration in x or y direction [L] y&&Δ

ε    Bearing eccentricity [L] 

0ε    Bearing eccentricity ratio, see Eq. 7 [dim] 

pθ    Pad extent angle 

μ    Dynamic viscosity [M/(L·T)] 

ν   Kinematic viscosity [L2/T] 
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INTRODUCTION 

  

High-speed turbopumps require reliable bearings to support the shaft or rotor.  

One general type of bearing used in these applications is the hydrostatic bearing, which 

uses external pressurization to inject fluid into the bearing.  A restricting orifice creates 

the pressure necessary to support the shaft in this type of bearing.  The pocket pressure 

supports the shaft even when there is no rotation. 

On the other hand, hydrodynamic bearings do not use orifice restriction.  A thin 

fluid-film wedge develops as the shaft rotates, raising it off the bearing surface in a 

process called lift-off [1].  Since there is no need for external pressurization, 

hydrodynamic bearings eliminate a substantial cost to the end-user.   

Bearing rotordynamic characteristics will be modeled using a combination of 

stiffness, damping, and mass coefficients.  The following linearized force-displacement 

bearing model [2] is used for analysis:  
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The use of this linear model is a common practice in the analysis of rotor-bearing 

systems [3].  Castigliano’s theorem states that a neutrally stable elastic system must have 

a symmetric stiffness matrix [4].  The presence of skew-symmetric stiffness coefficients 

indicates the presence of destabilizing forces [4].  Subsynchronous vibrations are one 

result of destabilizing force in bearing systems.  Tilting pad bearings (TPBs) 

significantly reduce or eliminate subsynchronous vibrations [5].  This type of bearing 

can be either hydrodynamic, hydrostatic, or hybrid (a combination of both).  TPBs make 

use of pivots such that pads can rotate freely.  A diagram of one type of TPB follows in 

Fig. 1. 

 

 

____________ 
This thesis follows the style and format of the ASME Journal of Tribology. 
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Fig. 1  Typical spherical seat TPB [6] 

 
Even so, there are drawbacks to TPBs.  These include wear at the pad pivot, 

tolerance stack up due to a more complex design, reduced damping, and difficulty of 

installation [7].  An alternative to TPBs are flexure pivot pad bearings (FPBs), also 

known as the flexible-pivot tilting-pad bearings.  A FPB is machined as a single piece 

and uses a thin beam or web to support the bearing load.  A typical FPB is shown in Fig. 

2 and can be designed as either hydrodynamic, hydrostatic, or hybrid (combination of 

both).  The rotational stiffness of the web allows for support while still flexing or tilting 

enough to reduce cross-coupled stiffnesses and reduce the likelihood of subsynchronous 

instabilities.     
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Fig. 2  Flexure pivot pad bearing [2] 

 

 

Research Objective 

The purpose of this project is to determine when a rotor lifts off in a 

hydrodynamic FPB and to compare its performance with a hydrostatic bearing.  Bearing 

performance is determined through lift-off speed, load capacity, and the shaft position at 

design speed.  The design speed is the running speed at the end of the speed ramp for a 

specific test case.     

 

Need Statement 

 Some high-speed cryogenic turbopumps use hydrostatic bearings thus requiring 

external pressurization [8].  An experimental comparison between hydrodynamic FPBs 

and hydrostatic bearings should determine the circumstances under which current 

hydrostatic bearings can be replaced with hydrodynamic FPBs.   

 

Overview 

This thesis describes the design and testing of three FPBs with differing preloads 

and compares their performance to a hybrid hydrostatic bearing (HHB).  First, design 
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simulations are conducted using the XLTRCTM Rotordynamics Suite (XLTRC2) [9].  By 

varying specific design parameters that affect the load capacity of the bearing, it is 

thought that the lift-off performance of the bearing will also be affected.  After the 

design is completed, the designed FPBs are manufactured and tested.  An HHB is also 

tested for comparison.  Lift-off is determined from a shaft circuit voltage and verified 

with waterfall and shaft centerline plots.  All tested bearings are also simulated in 

XLHydroJet® [10] to determine the validity of predicted results.   
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LITERATURE REVIEW 
 
 
 Early developments of the FPB by Zeidan and Paquette [7, 11] describe the 

advantages of manufacturing a FPB versus a TPB.  Due to their geometry, FPBs 

eliminate tolerance stack up and pivot wear.  There are no pads to install on the bearing 

thus easing installation.  Experiments conducted by De Choudhury et al. [12] 

demonstrate that, in comparison to a similar five-pad TPB, a FPB operates at a lower 

temperature and has less frictional power loss.   

Since TPBs reduce cross-coupling, FPBs, similar to TPBs in geometry, should 

also reduce cross-coupling and stabilize the system.  Armentrout and Paquette [13] 

showed that FPBs reduce destabilizing cross-coupling forces.  For a four-pad FPB, with 

L/D = 0.75 at 10,000 rpm, a pad rotational stiffness below 1,000 N-m (113.0 lb-in) 

yields a bearing with cross-coupled stiffnesses comparable to TPBs.  When the pad 

stiffness is above 100,000 N-m (11,300 lb-in), a FPB acts like a fixed geometry bearing.  

This leads to destabilizing cross-coupled stiffnesses.  Evaluation of the pad web stresses 

showed that, for an appropriately chosen geometry, the stresses on the pad web are too 

small to degrade the lifetime due to fatigue.   

 

Models  

The physical modeling of FPBs is necessary for predicting their behavior in 

operation.  Early linear models of the bearing dynamic force coefficients by Chen [3] 

confirmed the stability of a FPB.  The method demonstrates that the support web must 

be thick enough to carry the applied load and avoid fatigue, while at the same time being 

flexible enough to mimic a TPB.  San Andrés [8] introduced a bulk turbulent flow 

thermal analysis of FPBs, specifically for cryogenic applications.  The model shows a 

reduced whirl frequency ratio (WFR) without loss in load capacity or reduction in direct 

stiffness or damping.  WFR is the ratio between the rotor natural frequency and the onset 

speed of instability [1], and a lower WFR denotes a more stable bearing.     
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Effect of Varying Preload 

An exact definition of preload, bearing clearance, and pad clearance can be found 

in the Bearing Design section of this thesis.  Elwell and Findlay [14] explored the 

relationship between load capacity and bearing clearance in TPBs.  Since preload is 

related to bearing clearance, preload is also varied.  Results for a laminar, 

incompressible flow numerical solution of the Reynolds equation yield some insight into 

the behavior of TPBs.  They show that bearing load capacity increases with reduced 

bearing clearance.  However, the pad clearance seems to have little effect on the bearing 

load capacity [14].   

Others who conducted tests over a range of preloads include Wygant, et al. [15].  

Their measurements indicated that preload does affect operating eccentricity but not 

attitude angle.  Operating eccentricity is the equilibrium position of the shaft in the 

bearing for a fixed load, and attitude angle is the angle made by the center of the shaft 

with respect to the center of the bearing [1].   

 

Lift-off Testing 

Scharrer et al. [16] conducted lift-off tests for hydrostatic bearings.  These lift-off 

experiments tested a hydrostatic journal bearing in a liquid nitrogen environment.  

Several different bearings were used in testing, but the most common geometry is 

provided in Table 1.  The clearance ratio is a description of the bearing clearances as a 

fraction of the total bearing radius.  An exact definition of these terms is provided in the 

Bearing Design section.   

 

Table 1  Bearing geometry from Scharrer et al. [16] 

Diameter 76.2 mm (3.0 in)
Length 31.75 mm (1.25 in)
Recesses 6
Clearance ratio (C b /R b ) 0.0267
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For these tests, Scharrer et al. [16] state that the reversal in shaft direction of rotation 

from clockwise to counter-clockwise indicates the beginning of hydrodynamic lift-off, as 

demonstrated in Fig. 3.   

Inception of 
hydrodynamic lift-off 

 
Fig. 3  Hydrodynamic lift-off from Scharrer et al. [16] 

 

Zhu [17] performed tests for Rayleigh step gas bearings using waterfall plots to 

identify the point after lift-off occurred.  In gas bearings, metal to metal contact causes 

chattering frequencies to develop which can be identified with waterfall plots.  The point 

where these chattering frequencies stop is the lift-off point.  An example from Zhu’s 

work can be seen in Fig. 4.   
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Fig. 4  Gas bearing chattering frequencies indicating rub [17] 

 
Lu and Khonsari [18] used the Stribeck curve for the coefficient of friction to 

predict lift-off in a constant-radius journal bearing.  The bearing had an L/D = 1, Cb/Rb = 

0.0138.  The unit load was varied between 3.5 bar and 14.2 bar.  With SAE 30 oil, they 

predicted that increasing unit load generally increased lift-off speed.  Reducing the fluid 

viscosity by heating the oil also increased lift-off speed.      

The rubbing that occurs before lift-off can cause wear.  Bouyer et al. [19] 

experimented by running 2,000 start and stop cycles on a two-lobe hydrodynamic 

bearing.  The tests subjected the bearing surface to observable physical wear.  However, 

the study found that despite the wear, the bearing still functioned without observable 

problems.   
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BEARING DESIGN 
 

 

The first step in the design of the bearing was to determine which parameter had 

the most significant effect on lift-off.  The simulations do not predict lift-off.  Instead, 

they calculate the film thickness developed in the bearing.  For the design simulations, 

the maximum load capacity of the bearing is defined to be the load where the minimum 

film thickness is equal to twice the surface roughness of the rotor.  At this point, rubbing 

is assumed to occur between the rotor and bearing.  For a typical turning manufacturing 

process, the surface roughness is approximately 2 μm (0.08 mils) [20].  Using these 

definitions, both preload and offset are varied to discover their effect on bearing load 

capacity.  This definition is used in all the simulations to determine the load capacity.   

Bearing preload is a ratio that compares the bearing radius, the shaft radius, and 

the pad radius using specific clearances.  These radii and clearances are defined in Fig. 

5.   

Rp

Rb

Rs SHAFT

PAD

WEB

Cb

Cp

 
Fig. 5  Definition of rotor-bearing system radii [1] 

 

 To adjust bearing preload, the radial bearing clearance, Cb, is altered according to 

Eq. 2 from San Andrés [1], where m is the bearing preload, 
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p

b

C
C

m −= 1 .          (2) 

The following relationships describe the clearances: 

sbb RRC −= ,        (3) 

spp RRC −= .        (4) 

Bearing offset is also varied to see its effect on maximum load capacity.  Offset is 

defined by the Eq. 5, whereα is the pivot or web offset: 

.
β
θ

α p=        (5) 

The angles used in this relationship can be seen in Fig. 6. 

 

 
Fig. 6  Definition of web offset [1] 

 

 Eccentricity ratio is determined by the rotor displacement from the center of the 

bearing housing (in the x-y plane).  The dimensional eccentricity is defined as:  

,22
yx ee +=ε     (6) 

and the eccentricity ratio is  
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.0
bC
εε =     (7) 

The bearing clearance, Cb, is the minimum clearance where contact could occur.  Thus a 

ratio equal to one would refer to contact with the bearing surface, and a ratio equal to 

zero would be a perfectly centered bearing.   

To determine which parameter, preload or offset, has more effect on the rotor-

bearing system, simulations are run using the XLTRC2© bearing program, 

XLTFPBrgTM.  Table 2 shows the design parameters entered into the simulation with a 

load-between-pad (LBP) orientation.  

 

Table 2  Parameters for the flexure pivot pad support bearing predictions 
Parameter Value SI Unit Value Eng Unit
Rotor diameter 38.1 mm 1.5 in
Bearing axial length 38.1 mm 1.5 in
C p 106 μm 4.17 mils
C b 63.5 μm 2.5 mils
Number of pads 5 -- 5 --
Pad arc length 58 deg 58 deg
Pad pivot offset 0.5 -- 0.5 --
Pad inertia 1.21 μkg-m2 0.01 lb-in2

Rotational web stiffness 100 N-m/rad 778 lb-in/rad
Pad damping 0 N-s-m/rad 0 lb-s-in/rad
Supply pressure 0.101 MPa 14.5 psi
Supply temperature 40 °C 106 °F
Load orientation LBP -- LBP --
Material Bronze -- Bronze --  

 
Each parameter was selected by considering a variety of factors.  The rotor and 

bearing geometry and material were determined using the existing bearing housing 

designed by Dyck [21].  A finite element simulation in Solidworks© determined pad 

inertia and is available in the Appendix.   

The selected pad stiffness came from the recommended pad rotational stiffness of 

1.13 – 11,300 N-m/rad (10 – 100,000 lb-in/rad) set forth by Kepple et al. [5].  They used 
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a 50.89 mm (2.0035 in) diameter bearing with Cb/Rb = 0.00175.  The proposed bearing 

has a diameter of 38.23 mm (1.505 in) with Cb/Rb = 0.00333.  The difference in these 

bearings is small so using a moderate pad rotational stiffness within this range should be 

acceptable.  If the pad stiffness exceeds the recommended upper limit, the web no longer 

deflects enough for the bearing to behave as a TPB, and the cross-coupled stiffnesses 

increase significantly.  Selecting a lower stiffness further decreases the possibility of 

instabilities due to cross coupling.   

The clearances were selected by choosing a specific preload and offset.  The 

number of pads, pad stiffness, and load orientation were also varied slightly to see their 

effect on the system.  These results will be discussed after noting the effect of preload 

and offset.   

The properties of water are listed in Table 3 with the temperature-viscosity 

coefficient,ϕ , defined as follows: 
)(

21
21 TTe −−= ϕμμ .    (8) 

This temperature-viscosity coefficient is a variable specific to XLTRC2©, allowing the 

program to determine how viscosity varies with temperature.   Two reference 

temperatures (T1 and T2) with known viscosities are used to calculate this coefficient.   

 

Table 3  Properties of water at supply temperature = 104 °F (40 °C) 
Parameter Value SI Unit Value Eng Unit

Viscosity at Supply Temp. 653.0 μPa-s 0.64 cp
Density at Supply Temp. 1032 kg/m3 61.9 lbm/ft3

Compressibility 459.90 μm2/N 3.40 mil2/lb
Specific Heat 4186 J/(kg-K) 0.9989 BTU/(lb-oF)

Thermal Conductivity 0.675 W/(m-K) 0.3656 BTU/(ft-hr-oF)
Coeff. Thermal Expansion 0.00025 1/K 0.000141 1 / oF

Temp-Viscosity Coeff. 0.014 1/K 0.01017 1 / oF
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Effect of Preload and Offset 
 
 When preload is changed, the clearances in the bearing change, affecting the 

behavior of the fluid film.  Since this fluid film supports the bearing, the load capacity of 

the bearing should also be affected by changes in the preload.  Typical values of preload 

range from 0.2 to 0.6.  Beyond 0.6, San Andrés [1] found that frictional losses are high, 

rendering the bearing impractical.    

The bearing simulated in XLTRC2 gives the changes in maximum load capacity 

due to changes in preload, shown in Fig. 7.   

Vary Cp

Vary Cb

 
Fig. 7  Predicted maximum load unit capacity for varying preloads at 3000 rpm 

 

The eccentricity ratio, which is  determined by the simulations does not necessarily stay 

constant as it depends on Cp which changes with different preloads.  For details on the 

bearing used in these simulations, see Table 2 and Table 3.  A design running speed of 

3000 revolutions per minute (rpm) was selected for the predictions.  Also, the unit load 

capacity, Wunit, is defined as: 

LD
WWunit = .     (9) 
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Two different methods of varying preload were conducted, as shown in Fig. 7.  

The purpose of this figure is to illustrate that changing the preload does change the load 

capacity of the bearing.  The first method for illustrating a changing load capacity holds 

Cp constant and varies Cb.  This moves the entire pad closer to the rotor, changing the 

preload.  The predicted results for this method shown with a dotted line indicate that 

load capacity increases quickly with increasing preload.  Trends simulated by Elwell and 

Findlay [14] agree with this result—a smaller Cb yields a greater load capacity.     

The other method holds Cb constant and varies Cp.  This changes the curvature of 

the pad in order to change preload.  Since Cb determines the minimum bearing clearance, 

changing Cp is more practical from a manufacturing standpoint.  Each FPB will be 

compared to a HHB with no preload.  The FPB must also have the same minimum 

clearance, or Cb, as the HHB.  To change preload for the different FPBs, then, Cp will be 

changed.  As shown in the solid line in Fig. 7, the maximum load capacity decreases 

gradually when increasing preload in this manner.  Elwell and Findlay [14] found no 

effect on the load capacity for an increasing Cp.   

Next, the web offset is varied in XLTRC2© at 3000 rpm with m = 0.5.  The 

clearances used for varying offset and for changing other parameters are as follows: Cb = 

63.5 μm (2.5 mils) and Cp = 127 μm (5 mils).  These clearances used for the simulations 

in Fig. 8 to Fig. 12.  The results for varying offset are shown in Fig. 8.  
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Fig. 8  Predicted maximum unit load capacity for varying offsets 

 
As the offset increases, the maximum load capacity also increases.  However, this value 

peaks at relatively small value.  The total change in load capacity is significantly less for 

a varying offset than for a varying preload.  Thus, for reasonable ranges in both preload 

and offset, changing the preload would have more effect on the load capacity of the 

bearing than changing the offset.  This is true regardless of the way the preload is varied.   

 

Drag Torque and Power Loss 

To evaluate the drag torque that is caused by the FPB support bearing, 

XLTFPBrgTM is again used to predict the power loss at various shaft speeds.  From the 

power loss, the drag torque is calculated using a 53 N (12 lbf) load.  This prediction was 

made prior to receiving any bearings.  Later shaft weight measurements resulted in a 

load of 31.1 N (7 lbf), so this prediction should give a reasonable, conservative 

approximation.  The results are shown in Fig. 9. 
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Fig. 9  Predicted power loss and drag torque for a FPB speed ramp up to 3000 rpm 

(m = 0.5, θp = 0.5) 
 

Generally, the power loss grows along a second order curve while the drag torque 

appears linear with speed.  Both the power loss and drag torque are very small up to the 

maximum design speed, 3000 rpm.   

 
Other Design Considerations 

For the previous simulations, certain design choices were made to consider the 

effect of preload and offset.  However, there are other parameters that affect maximum 

load capacity.  Varying the number of pads can also change the load capacity, as shown  

Fig. 10. 
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Fig. 10  Maximum unit load capacity for varying number of pads at 2500, 3000, and 

3500 rpm (m = 0.5, θp = 0.5) 
  

Near the maximum design speed, the six-pad configuration has the highest unit load 

capacity.   However, increasing the number of pads also increases the manufacturing 

cost.  A five-pad configuration would not be easily split in two.  Although it is not 

necessary to split the bearing for these tests, using a bearing that would more likely be 

used in real industry applications is preferable to something that would not be 

considered.  Therefore, the four-pad configuration will be used in the bearing.    

Next, the load configuration is simulated.  For the four-pad configuration, the 

load is set to either LBP or load-on-pad (LOP), and the results are shown in Fig. 11. 

  



 27

 
Fig. 11 Maximum unit load capacity for varying load configuration at 2500, 3000, 

and 3500 rpm (m = 0.5, θp = 0.5) 
 
The predictions show that the LOP configuration gives a much larger load capacity.  

However, LOP is generally used for lightly loaded high speed applications; whereas, 

LBP is used for more heavily loaded applications [1].  Thus, the LBP configuration is 

chosen because the magnitude of the applied loads in the experimental tests could be 

very large.     

Finally, the effect of pad rotational stiffness is evaluated for a four-pad FPB.  The 

low stiffness refers to the stiffness given by Table 2, and the high stiffness is ten times 

the table value.  As can be seen in Fig. 12, pad stiffness increases the load capacity 

slightly.  Simulations showed that, in general, larger rotational stiffness led to larger 

magnitude cross-coupled stiffnesses.  Thus, it is desirable to operate at lower rotational 

stiffnesses.  A low rotational stiffness will be chosen for manufacture, and this parameter 

will not be varied.   
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Fig. 12  Maximum unit load capacity for varying pad rotational stiffness 

 at 2500, 3000, and 3500 rpm (m = 0.5, θp = 0.5) 
 

 
Test bearings 

According to the previous simulated results, changing the preload does change 

the load capacity of the bearing.  Zero preload is the best preload for the method of 

varying Cp, according to Fig. 7.  However, three preloads are selected.  A bearing with 

no preload would be best for comparison, but that was not selected for this study.  Future 

studies might explore the effect of changing Cp to change load capacity.   

Having determined the effect of preload and offset, three different preload 

bearings were manufactured for experimental testing.  The designed bearing geometries 

can be found in Table 4.   
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Table 4  Designed FPBs 

Preload 0.3 0.5 0.7 Unit
Radial axial length 38.1 (1.5) 38.1 (1.5) 38.1 (1.5) mm (in)
C p 90.71 (3.57) 127.00 (5.00) 211.67 (8.33) μm (mils)
C b 63.5 (2.50) 63.5 (2.50) 63.5 (2.50) μm (mils)
Offset 0.5 0.5 0.5
Number of pads 4 4 4 --
Pad arc length 72 72 72 deg
Pad pivot offset 0.5 0.5 0.5 --
Material 660 bearing bronze 660 bearing bronze 660 bearing bronze  
 

The web design for these bearings was performed by the manufacturer since it is a 

patented design.  However, an approximate design of the web can be found in the 

Appendix.  Two views of the m = 0.3 bearing design are shown in Fig. 13 and Fig. 14.   

 
Fig. 13  FPB top view (m = 0.3), bearing diameter 38.23 mm (1.505 in.) 
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Fig. 14  FPB front view (m = 0.3), bearing diameter 38.23 mm (1.505 in.)  

 
The fluid supply is through four inlet ports between the four pads.  Also, two end seals 

help prevent fluid leakage in the axial direction.  These features are shown in Fig. 15. 

Snap ring

Snap ring

End seal

End sealFluid supply port

Centerline

 
Fig. 15  FPB section view showing end seals and supply ports, pad length between 

seals = 38.1 mm (1.5 in). 
 

During testing of the FPBs, the fluid supply pressure was varied.   Three different 

fluid supply pressures were used with different flowrates.  These supply pressures and 

corresponding flowrates are shown in Table 5.   
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Table 5  Supply pressures and flowrates for FPB testing 

Supply pressure (bar) Flowrate (lpm)
0.69 (10 psia) 5.68 (1.5 gpm)
2.76 (40 psia) 10.22 (2.7 gpm)
5.52 (80 psia) 13.63 (3.6 gpm)

 
 

In addition, one six pocket HHB was manufactured for comparison with FPBs, 

and its details can be found in Table 6.   

 

Table 6  HHB geometry 
Parameter Value Unit
Bearing axial length 38.1 (1.5) mm (in)
Radial bearing clearance 63.5 (2.50) μm (mils)
Number of pockets 6 --
Pocket axial length 11.97 (0.47) mm (in)
Pocket depth 406 (16) μm (mils)
Orifice diameter 1.397 (0.055) mm (in)
Orifice location relative to pocket (%) 50 --
Material 660 Bearing Bronze --

 
 

The outer design of the HHB is similar to the FPB but does not contain any end seals.  

The geometry and six pockets or recesses of the HHB can be seen in Fig. 16.  The fluid 

supply pressure for the HHB was varied linearly with time to match a linear speed 

profile.  Details about this pressure profile are provided in the Results section of this 

thesis.   
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Bearing pad 
pressure port

Fluid supply port

Recess

 
Fig. 16  HHB geometry with supply ports and recesses shown 

 
While Fig. 16 gives a general view, the detailed pocket or recess geometry is shown in 

Fig. 17. 

 
Fig. 17  HHB recess or pocket detail, depth = 483 μm (19.0 mils) 

 
The recess has a uniform depth, creating no curvature in the recess.  Thus, the diameter 

of the recess and the diameter of the bearing are concentric.  If a fictitious pad were 

created with the geometry of the pad, the bearing would have no preload.  Pictures of 

both of these bearings are included in Fig. 18 and Fig. 19.   
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Fig. 18  Photo of FPB with seal end removed, made with 660 bearing bronze 

(m = 0.3 design) 
 
 

 
Fig. 19  Photo of HHB made from 660 bearing bronze 

  



 34

EXPERIMENTAL PROCEDURE 
 

With the bearing design and specification complete, the next step is to test the 

bearings.  The test rig used for performing bearing tests is shown in Fig. 20.    

 

Test bearing

Mag bearing

Grounding 
Brush

Support bearing

Tach

Flex coupling
Elastomeric coupling

DC Motor

Quill shaft

 
Fig. 20  Schematic of test rig 

 
A DC motor turns the shaft supported on one end by roller element bearings and on the 

other end by the test bearing.  The test bearing lubricant exits into the enclosure 

surrounding the test bearing.  A magnetic bearing with a radial clearance of 

approximately 508 microns (20 mils) applies shaft load.  However, it does not support 

the shaft during testing.  The shaft contacts at a grounding brush for use in the shaft 

circuit described later, and the tachometer measures the rotational shaft speed.  A large 

protective cage encloses the entire test rig as shown in Fig. 21.  
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Fig. 21  Photo of front of test rig 

 
For testing, a circuit runs through the shaft with contacts at the test bearing and 

the grounding brush.  When the shaft disconnects from the surface of the test bearing, 

the circuit breaks.  In this manner, the circuit determines shaft lift-off.  Further detail of 

this circuit and the test rig design is displayed in the schematic in Fig. 22. 

 

 
Fig. 22  Shaft circuit schematic showing load and ground  
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The support bearings, magnetic bearing, and coupling are all electrically 

insulated.  The support bearings are silicon nitride roller-element type bearings but do 

not pass any current.   No contact is made at the magnetic bearing due to its large 

clearance with the shaft.  The coupling is an elastomeric type that does not allow current 

flow.  Hence, the current will pass from the battery through a resistor into the test 

bearing.  From there, it will enter the shaft and then exit through a brush at the other end 

of the shaft.  Variations in voltage across the resistor will be monitored and recorded in 

LabView® to determine the exact moment of lift-off when the circuit is broken. 

 The shaft circuit voltage determines lift-off, but a variety of instrumentation 

obtains supporting data.  Proximity probes determine shaft position at three different 

locations.  Pressure and temperature probes record the test operating conditions.  The 

motor controller sends LabView® the motor speed.  In addition, accelerometers at the 

test bearing, support bearing, and motor record vibration data.    

  The procedure listed below shows a step-by-step process for lift-off testing.  The 

first part of this procedure deals with bearing alignment.  The second part gives the test 

procedure.   

 

Bearing Alignment Procedure 

1) Install bearing into the test pedestal by tightening the insertion bolts all the way 

in.   

2) Loosen the insertion bolts and insert 50.8 μm (2.0 mil) shims at four positions on 

the bearing (on the pad if applicable).  Note that the magnitude of shimming 

depends on bearing clearance.   

3) Tighten bolts and lock bearing with locking bolts.   

4) Measure depth with a micrometer-type depth gauge at three points around the 

bearing face to ensure there is no cocking of the bearing in the test pedestal.  The 

depth at each of these three points should be within 12.7 μm (0.5 mil) of each 

other. 
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5) Remove the shims from between the shaft and the bearing.   

6) Close the test bearing pedestal with the outer housing and install proximity 

probes to proper depth.   

7) Energize the magnetic bearing and enter calibration factors for loading. 

8) While recording bearing position data in LabView®, load the shaft in a manner 

to bump it against the bearing surface.  Repeat these bump tests in every 

direction until a clear picture of the bearing clearance is formed.   

9) Determine bearing clearance from the bump test data in both the X and Y 

directions.   

10) The bearing alignment is complete if the X and Y calculated clearances are within 

25.4 μm (1 mil) of each other.  This ensures the shaft is centered and can move 

freely.   

 

Test Procedure 

1) Turn on the pump to buffer water to the test bearing.   

2) Turn on air to the air seal that prevents water flowing axially to the magnetic 

bearing.   

3) Establish a flow of water to the bearing based on the supply pressure specified by 

the test case.  The test matrix showing all test cases is shown in the Appendix.     

4) Begin LabView® data acquisition.   

5) Turn on the motor and accelerate to the design speed with the load and pressure 

profile given by the specific test case.     

6) Record data to both a binary file and a spreadsheet.   

7) Stop the motor and repeat each test case until 10 iterations of current test case are 

completed.   

8) Proceed to next test case.  If all test cases are complete for current bearing, turn 

off water and repeat bump test as described in the bearing alignment procedure.  

This will determine if the bearing has moved substantially during testing.    

9) Remove current bearing and observe wear.   
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10) Proceed to next bearing and repeat bearing alignment procedure and test 

procedure.   

 

Bearing clearance measurement 

In FPBs, the bearing clearance (Cb) is the minimum clearance in the bearing, thus 

it will be used to determine bearing eccentricity and preload.  Typically, one could place 

the shaft in contact with the center of one pad and then move it to the center of the 

opposing pad to determine bearing clearance from the displacement.  However, due to 

the setup of the test rig, the test bearing could only be mounted in the LBP position.  

This prevented a simple shaft up and down bump test to determine bearing clearance.  

Loading the shaft at a 45° angle to attempt load-on-pad proved unmanageable for 

determining bearing clearance.  When load was applied at an angle, the shaft slipped off 

the pad to one of the LBP pad positions.   

 Instead of trying to load directly on the pad, bump tests were performed over the 

bearing circumference for eight different load directions.  Loads covered the horizontal, 

vertical, and 45° diagonals in the bearing.  An example of the resulting data is shown in 

Fig. 23. 

Measured data

Approximate pad 
locations

 
Fig. 23  Shaft centerline bump test data, FPB (Designed m = 0.3) 
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There is a concentration of data points at the four corners between the pads.  Notice also 

that there are points along the pads in between these four corners.   The four arrows 

indicate the web or center locations of each of the four pads.  Clearly, the shaft has the 

greatest displacement in between the pads.  Using this data, a bearing clearance circle 

can be drawn such that it touches the most likely location of the center of each of the 

four pads.  After centering the bearing at point (0,0), the bearing clearance circle appears 

as shown in Fig. 24.   

 

Web location

Web location

Web location

Web location

 
Fig. 24  Clearance circle FPB (Designed m = 0.3) 

 

This method is repeated to obtain average radial bearing clearance values for each 

bearing.  A summary of the average bearing clearance is in Table 7.   

 

Table 7  Measured average Cb 

Designed preload Designed C b  µm (mils) Measured C b  µm (mils)
0.3 63.5 (2.5) 74.42 (2.93)
0.5 63.5 (2.5) 60.71 (2.39)
0.7 63.5 (2.5) 66.55 (2.62)
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The manufactured Cp and Cb are shown in Table 8.   

 

Table 8  Manufactured clearances with tolerances 

Preload Manufactured C b  μm (mils) Manufactured C p  μm (mils)
0.3 57.15-63.5 (2.25-2.5) 83.82-90.17 (3.30-3.55)
0.5 57.15-63.5 (2.25-2.5) 120.65-127.00 (4.75-5.00)
0.7 57.15-63.5 (2.25-2.5) 208.28-214.63 (8.20-8.45)

 
 

Using the upper end of the tolerance range, the difference between Cp and Cb is 

calculated for the given manufactured clearances.  This difference is then used to 

calculate a new preload for each bearing.  A new Cp is calculated by adding this 

difference to the average measured Cb.  From these values, a preload can be calculated 

according to Eq. 2.  The resulting measured preloads and clearances are summarized in 

Table 9.   

 

Table 9  Summary of measured clearances and preloads for FPBs 

Designed preload Measured C b  µm (mils) Calculated C p  µm (mils) New preload
0.3 74.42 (2.93) 101.63 (4.00) 0.27
0.5 60.71 (2.39) 124.21 (4.89) 0.51
0.7 66.55 (2.62) 214.72 (8.45) 0.69

 
 

The actual measured Cb for the HHB is different from the value given by the 

manufacturer.  The given Cb is 63.5 ± 2.5 μm (2.5 ± 0.1 mils).  However, the measured 

value according to the procedure determined above was 59.1 μm (2.327 mils).  The 

measured values for the clearances and preloads of all the bearings will be used in the 

Results section.   
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Lift-off Determination 

There are three methods used in this paper for determining and confirming lift-

off.  First, the shaft circuit voltage is monitored for disturbances indicating lift-off.  This 

was by far the most successful method.  It achieved repeatable results within several 

hundred rpm.  Considering the rapid acceleration of the shaft (0 to 4500 rpm in 

approximately 0.84s), this is a highly accurate result.   

Second, waterfall plots are made of the accelerometer data showing vibrations in 

the test pedestal.  Larger vibration amplitudes are observed during bearing rubbing than 

when it has lifted off.  This second method has been used in air bearings and evaluates 

waterfall plots of the displacement data [19].  A chattering frequency at low speeds 

occurs when there is metal-to-metal contact.  This method yielded some accurate results 

but lacked consistency in testing.  The exact point of lift-off was harder to determine due 

to several different high frequencies to watch during bearing rub.   

Finally, since the bearing clearance defines the shaft position relative to the 

bearing surface, shaft centerline plots can be used to verify lift-off.  Centerline plots 

depend on the definition of the bearing surface.  Since there is some uncertainty in 

determining the bearing clearance, exact lift-off speeds will also have some uncertainty 

when calculated by this method.     

After consideration of the three methods described, the most repeatable and 

accurate indicator of lift-off comes from variation in the shaft voltage.  For the example 

given in Fig. 25, there is a clear drop of about 0.25 volts as the shaft rises from the 

bearing housing.   
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Fig. 25  Lift-off voltage for FPB (m = 0.27, 0.689 bar supply, 0.135 bar static unit 

load, test case 4-12-08) 
 

In this case, there is an initial lift-off with some associated noise as the shaft begins to 

spin.  However, voltage continues to drop, indicating the shaft has fully lifted off.  For 

practical purposes, lift-off is defined as the point where the average change in voltage 

from the steady voltage is greater than 0.05 volts.  Since the noise in the signal may vary 

up to a magnitude 0.03 volts, this condition eliminates predicting the wrong lift-off 

voltage due to noise in the signal.  To filter out touchdowns or contacts at the very 

beginning of the lift-off, this condition must be met for a minimum of 8 ms.  The lift-off 

speed recorded for this particular test case is 460 rpm.   

 Vibration amplitudes over the range of running speeds can also be used as a 

method of verifying lift-off.  Accelerometers mounted on the test bearing pedestal record 

these vibrations.  The amplitudes of these vibrations are plotted in a waterfall plot in Fig. 

26 showing the frequency of the vibration and its running speed.    
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Rubbing frequencies
1X

Note: 

EU = m/s2  
Fig. 26  Waterfall plot of rubbing frequencies (m = 0.27, 0.689 bar supply, 0.135 bar 

static unit load, test case 4-12-08) 
 

 
The rubbing frequencies are supersynchronous and begin at startup.  The amplitudes of 

vibrations are significantly reduced by the time the shaft reaches 3000 rpm.  However, 

the rub frequency amplitudes do not all fall off at the same running speed.  For example, 

the vibration closest to the 450 Hz frequency appears to reduce dramatically near 1500 

rpm while the 600 Hz frequency does not drop until 2200 rpm.  This makes it difficult to 

predict an exact lift-off speed from these data.   When the lift-off voltage technique was 

used on this same data set, the lift-off speed determined was 460 rpm.  This example 

gives a conflicting result with the lift-off voltage technique, illustrating the difficulty in 

achieving consistent results with this method.  A better case is shown in Fig. 27.  
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Rubbing frequencies
1X

 

Fig. 27  Waterfall plot of rubbing frequencies (m = 0.27, 0.689 bar supply, 0.135 bar 
static unit load, test case 3-29-08) 

 
The 600 Hz frequency in this test case shows a drop around 1300 rpm.  This is very 

close to that predicted by the 1380 rpm predicted by the lift-off voltage technique.  The 

reason for the large difference in lift-off rpm between this test case and the one done 

later (4-12-08) can be attributed to a variety of factors.  The m = 0.27 bearing was 

removed in between the tests and the Cb changed slightly.  Another factor could be some 

wear at the bearing surface affecting the lift-off speed.   Regardless, this figure is 

included to show that the rubbing frequency technique does seem to give an accurate 

range for the resulting lift-off, but it is difficult to determine an exact lift-off speed.   

 The final confirmation of lift-off comes from the proximity probe shaft centerline 

plots.  Continuing with the case in Fig. 25, results for the shaft centerline plot are shown 

in Fig. 28.  
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Fig. 28  Shaft centerline movement (m = 0.27, 0.689 bar supply, 0.135 bar static unit 

load, test case 4-12-08) 
  

The shaft centerline plot shows the shaft rotating in a clockwise manner and rising 

quickly to its equilibrium position at 3000 rpm.  The eccentricity ratio calculated with 

the bearing clearance circle as shown is 0ε  = 0.86.  From these data, the shaft clearly 

lifts off from the bearing surface and achieves an equilibrium position. The problem with 

determining lift-off speed is that the bearing clearance circle is also ideal.  Since the pads 

can move, determining the exact point where the shaft stops contacting the pad is at best 

an educated guess.  With the bearing clearance circle drawn as above, the shaft 

centerline plot indicates a lift-off speed of less than 10 rpm, which is quite different from 

the 460 rpm calculated by the lift-off voltage method.  The shaft centerline plot shows 

clear lift-off, but is not useful for determining the exact lift-off speed.   
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RESULTS 
 
 
 Analyzing test data according to the criteria described in the previous section 

enables lift-off speeds to be determined.  The lift-off speeds for FPBs will be compared 

to results and predictions for a HHB.  Recall that predictions are based on the predicted 

load capacities of each bearing.   

Predictions were made using XLHydrojet®, a rotordynamics program designed 

for hydrodynamic and hydrostatic bearings.  A grid size of 21 circular points by 13 axial 

points was used, and the code was run until it converged.  The program does not 

calculate lift-off speed directly.  Instead, the program predicts eccentricities at specific 

running speeds based on an inputted load.  Using these eccentricity results and knowing 

the bearing clearance allows one to calculate the fluid film thickness via Eq. 7.  When 

this fluid film thickness falls below 2.0 μm (0.07 mil), which is a typical machined 

surface roughness, then contact is assumed to occur.  Another way to interpret this same 

limit is to say that when the eccentricity ratio is greater than 0.97, contact occurs.  The 

first speed after the fluid film thickness is greater than the minimum value is the 

predicted lift-off speed.   

A comparison of the lift-off speeds for the FPBs with a simple constant shaft 

weight load (unit load = 0.135 bar) is shown in Fig. 29.  No additional load was applied 

with the magnetic bearing in this test case.   
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Fig. 29  Lift-off speed comparison for FPB (0.135 bar static unit load due to rotor 

weight only, varying supply pressure) 
 

In each case, lift-off occurs before 700 rpm.  A general trend of decreasing lift-off speed 

with increasing preload is evident but inconsistent.  One standard deviation is shown for 

ten test runs.   

 In Fig. 29, the predicted lift-off speeds are much higher than actual recorded 

speeds.  These predicted speed are based on load capacity predictions.  It is important to 

note that the load capacities were predicted at a fixed running speed.  The load was then 

increased until the fluid film thickness fell below the 2.0 μm (0.07 mil) threshold.  For 

the experimental results, the running speed was varied, and the load applied remained 

constant.   

The results in Fig. 29 show that increasing supply pressure reduces the lift-off 

speed.  Lower lift-off speeds correspond to less rubbing on the bearing, thus increasing 

bearing supply pressure improves lift-off.  Hydrodynamic bearings are not designed to 

operate hydrostatically so this supply pressure dependency was unexpected.  One 

explanation of this pressure effect could be the phenomenon of “hydraulic jack.”  That 

is, the orifice directly below the shaft applies enough pressure to lift the shaft slightly.  

This is typically seen in TPBs where the orifice is on the pad.  However, this is most 

likely not happening in the FPB.   
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Another explanation comes from the restriction of the flow out of the bearing by 

the end seals in the FPB.  The end seals prevent the water from exiting immediately, 

allowing some pressure development to occur in the “pool” between the pads.  The 

pressure in this pool helps support the shaft and improve the lift-off in the bearing. 

Practically, however, the lowest pressure that still achieves reasonable hydrodynamic 

lift-off would be chosen.  Hence, for simplicity, the lowest supply pressure of 0.689 bar 

will be shown in the following test results.  Any exceptions to this are noted in the text.       

 
Linearly increasing unit load 

 The unit load on each bearing was increased linearly during every test case 

except the shaft weight-only cases.  That is, the magnetic bearing applied a force that 

increased linearly with time.  The load started as the shaft began its speed ramp and 

reached a maximum at the final running speed, called the design speed.  Due to the 

nature of the LabView® Virtual Instrument (VI) that sent the force to the bearing, a 

force pulse could only be sent once per loop.  Thus, loop buffer numbers were selected 

to achieve the most force pulses possible.  Even so, the result was a fast stepping up of 

the force to approximate a linear profile.  As an example, this profile is displayed for the 

m = 0.27 bearing with a unit load of 0.745 bar in Fig. 30.  Using this load condition 

yielded the results shown in Fig. 31.   
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Force = 0.745 bar 
at 3000 rpm

Stepping of unit 
load

Shaft speed

Static shaft weight (0.135 bar)

 
Fig. 30  Linear unit load force input to system (m = 0.27, 0.745 bar unit load, 0.689 

bar supply pressure) 
 
 

 
Fig. 31  Lift-off speed comparison for 0.745 bar unit load increasing linearly with 

time for 0.689 bar supply pressure (design speed = 3000 rpm) 
 

The general trend is decreasing lift-off speed with increasing preload.  Predictions were 

not made for the linearly increasing load cases because only static loads could be entered 
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into XLHydroJet® for lift-off prediction.  As previously stated, predictions are based on 

the load capacity and the code does not give a lift-off speed result directly.    

  

Lift-off comparison to HHB  

 For comparison to the FPBs, a HHB is also tested in the LBP configuration.  This 

particular HHB has pockets rather than pads.  The procedure for testing is the same as 

that used for the FPBs with the exception of the supply pressure.  Instead of using a 

static supply pressure as was used for the FPBs, a linearly increasing pressure profile 

was used.  The supply pressure started at zero and increased linearly with speed up to a 

maximum pressure.  Three different maximum pressures were chosen: 0.689 bar, 2.72 

bar, and 5.52 bar.  The pressure profiles for each design speed (linearly increasing to 

0.689 bar) are shown in Fig. 32 - Fig. 35.  For comparison with the FPB supply 

pressures, refer to Table 5. 

 

 

Supply pressure

Shaft running speed, 
3000 rpm max

 
Fig. 32  HHB supply pressure profile ramp to 0.689 bar (3000 rpm design speed) 
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Supply pressure

Shaft running speed, 
3500 rpm max

 
Fig. 33 HHB supply pressure profile ramp to 0.689 bar (3500 rpm design speed) 

 

Supply pressure

Shaft running speed, 
4000 rpm max

 
Fig. 34  HHB supply pressure profile ramp to 0.689 bar (4000 rpm design speed) 
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Supply pressure

Shaft running speed, 
4500 rpm max

 
Fig. 35  HHB supply pressure profile ramp to 0.689 bar (4500 rpm design speed) 

 
 With respect to the start of the running speed profile, the pressure profiles did not 

start at the same point consistently.  Variation in the start time of the pressure profile 

would be approximately 0.15 second on either side of the start time of speed profile.  

This variation even occurred for the exact same test cases.  Since the HHB is pressure 

dependent, this greatly influences the results.     

Lift-off results are tabulated for the range of running speeds previously 

described.  The load profiles were adjusted to reach the maximum load at different 

design speeds.  The design speed is the final running speed of the shaft for a particular 

test case.  Unfortunately, the motor took different periods of time to reach each design 

speed.  In fact, it took slightly longer to reach the higher design speeds.  That is, there 

are different acceleration rates for the same applied unit load.   

An increasing acceleration with increasing design speed is shown in Fig. 36.  

Physically, this means that the bearings with greater acceleration experienced the same 

loads at higher running speeds than those with lower accelerations.   
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Fig. 36  Shaft angular acceleration for selected design running speed 

 
The example shown in Fig. 37 illustrates variation of lift-off speed with design 

speed.  Both FPBs and HHBs are shown on the same graph for comparison.   

 

 
Fig. 37  Lift-off speed vs. design speed comparison for 0.745 bar linearly increasing 

unit load (0.689 bar linear supply pressure for HHB, 0.689 bar static pressure 
supply for FPBs, LBP configuration) 
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The results (labeled EXP. in the legend) show no clear trends, and thus no 

conclusion can be made about the individual bearings.  However, there are large jumps 

in the HHB.  This graph shows that the HHB is highly pressure dependent.  Based on the 

previous pressure profile plots, the start time of the pressure ramp severely affects the 

lift-off speed in the HHB.  As noted in Fig. 32 - Fig. 35, the supply pressure was difficult 

to control.   

The theoretical lift-off speeds shown in Fig. 37 are based on the load capacity 

predictions in XLHydroJet®.  The load was increased linearly with time for these test 

cases.  However, for the predictions, a static maximum load of 0.745 bar was applied, 

and the lift-off speed calculated for this load condition.   

Since the HHB is pressure dependent, a single pressure profile case and speed 

ramp case is chosen for comparison with the FPBs.  The shaft weight-only case at 3000 

rpm will be used.  Since the HHB could only be placed in the bearing housing in the 

LOP position, this orientation is compared to the FPB in the LBP position.  

Unfortunately, the LBP position was the only available orientation position for the FPB.  

LBP tests for the HHB could only be performed by applying an external side load with 

the magnetic bearing.  The test case for 0.689 bar supply pressure and 0.135 bar unit 

load is shown in Fig. 38. 
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Fig. 38  Comparison of FPB vs. HHB for shaft weight-only case (0.135 bar unit 

load).  LOP at 4500 rpm design speed for HHB and LBP at 3000 rpm design speed 
for FPBs.   Supply pressure is 0.689 bar linearly increasing for HHB and static 

0.689 bar for the FPBs.   
 

When comparing the two types of bearings without load from the magnetic bearing, it is 

clear that the FPBs have a much lower lift-off speed.  The superior hydrodynamic ability 

of the FPBs is evident as it lifts the shaft much earlier than the HHB does.  The 

predictions for the HHB are very close but the predictions for the FPBs are more than 

double the measured results.   

 Increasing the supply pressure in the HHB yields lift-off results similar to the 

FPBs.  As shown in Fig. 39, the lift-off speed decreases substantially for an increase in 

supply pressure.  The predicted lift-off speed is much lower than the speed shown in the 

results.   
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Fig. 39  HHB lift-off speed results for increasing supply pressure.  (Design speed = 

3000 rpm, 0.135 bar static unit load) 
 

Maximum unit load test results 

When the linearly increasing load was applied to the shaft, in most cases the FPB 

did not support the maximum load.  Instead, the shaft was forced back into contact with 

the bearing as illustrated by Fig. 40. 
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Lift-off voltage

Applied load

Initial lift-off Forced back 
into contact

 
Fig. 40  Lift-off, then contact in FPB (m = 0.27, 0.745 bar unit load, 0.689 bar 

supply) 
 
The bearing lifted off under lower loads and then came back into contact as the load 

increased.  The maximum load supported by the bearing was recorded as the last load 

before the shaft re-contacts the bearing surface.  If the bearing did not re-contact, then 

the maximum load recorded was the load at the design speed of the bearing.  Since the 

load was increased linearly until it reached its maximum at the design speed, the 

maximum load in this case would also be the maximum load applied.   

 The average load supported by each bearing is shown in Fig. 41 for the 0.745 bar 

unit load case.   
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Fig. 41  Maximum unit load supported for various preloads in FPBs (0.745 bar 

linearly increasing unit load at 0.689 bar supply pressure, design speed = 3000 rpm) 
 

Generally, the m = 0.27 bearing shows the highest load capacity, while the m = 0.69 

bearing showed a slightly lower load capacity.  The m = 0.51 bearing did not support any 

load at this supply pressure.  It did support load at higher supply pressures, but it still had 

the worst load capacity of all three FPBs.  A figure showing results for all the supply 

pressures is provided in the Appendix.  

 Comparing the FBP to the HHB at the 0.689 bar supply pressure proved difficult.  

The HHB did not lift-off until higher running speeds, so the chart in Fig. 42 compares 

the bearings at a design speed of 4500 rpm.   
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Fig. 42  Comparison of FPB and HHB maximum supported unit load for design 

speed = 4500 rpm, 0.689 bar supply pressure (static for FPB, linearly increasing for 
HHB), LBP configuration, 1.380 bar linearly applied unit load 

 

The results indicate that the HHB supports at least twice the load that the FPBs do.  The 

maximum applied load in this case is 1.380 bar, and this is supported by the HHB.  The 

load capacity of the HHB is superior to that of the FPBs.   

 

Eccentricity Ratios 

 The only load profile where final eccentricities were obtained for the FPBs was 

for the 0.135 bar static unit loading case.  The other cases loaded the shaft so that it 

remained in contact with the bearing.   Since the shaft can rub outside of the Cb with the 

movement of the pads, this resulted in calculated eccentricities greater than one.  The 

0.135 bar static unit load case gave eccentricity ratios at 3000 rpm as shown in Fig. 43.      
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Fig. 43 Final eccentricity ratios for 0.135 bar unit load at 3000 rpm, 0.689 bar 

pressure supply in a FPB 
 
The lower the eccentricity ratio, the closer the shaft is to the bearing center.  High 

eccentricities operate near the bearing surface and are more prone to rub.  The 

predictions show a decreasing eccentricity ratio with increasing preload.  This matches 

the trend found in the FPB results for the m = 0.27 and m = 0.51 case but is in conflict 

with the m = 0.69 results.     

The results for the HHB compared to the FPBs at a linearly increasing 0.689 bar 

supply pressure are shown in Fig. 44.   
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Fig. 44  Comparison of HHB and FPB at 3000 rpm, shaft weight-only case (0.135 

bar unit load).  Supply pressure is static at 0.689 bar for FPBs and linearly 
increasing to 0.689 bar for the HHB.  Orientation is LBP for FPBs and LOP for 

HHB.   
 
The HHB has much lower eccentricities than the FPB for the shaft weight-only case.  

Due to the bolthole arrangement in the bearing housing, the orientations of LBP for 

FPBs and LOP for HHB were the only ones possible when considering the shaft weight-

only case.  Future experiments should orient the shaft weight directly between the 

pockets for the HHB to confirm that its eccentricity ratio is still lower than the FPBs’. 

 

Attitude Angle 

 The attitude angle indicates the position of the shaft with respect to the load.  For 

the FPBs, the load was applied downward in the vertical direction.  Due to the 

orientation of the HHB, however, the load was applied as a horizontal side load to 

achieve a load-between-pocket configuration instead of a load-on-pocket.  During 

experiments, the attitude angle did not vary with supply pressure significantly for the 

FPBs.  Thus, the 3000 rpm, 0.689 bar supply pressure is chosen for results shown in Fig. 

45.  These results show the LOP configuration of the HHB since that was the only 

configuration available for the shaft weight-only case.    
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Fig. 45  Attitude angle comparison for HHB (LOP) and m = 0.51 (LBP) for 3000 

rpm and 0.689 bar supply pressure 
 

Attitude angles are slightly lower for the FPB than the HHB.  In comparison to the 

predictions for the 0.135 bar unit load case, results are much lower than the predicted 

attitude angle.  The simulations showed the shaft moving in the horizontal direction for 

light loads, which is indicative of no cavitation.  Increasing the unit load to 0.745 bar 

achieves predicted attitude angles closer to the experimental results.   

 The predictions for the HHB do vary with supply pressure, which is consistent 

with the experimental results for higher load cases.  A very good match between 

predicted (TH.) and experimental (EXP.) results is confirmed in Fig. 46.  The shaft was 

placed under a side load in order to maintain a LBP configuration.  Hence, lower loads 

were not available for the LBP configuration.   
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Fig. 46  Comparison of HHB attitude angles (LBP, 0.745 bar unit load, 0.689 bar 

supply)  

 

Comparison between water and kerosene for FPBs  

The system conditions are meant to simulate a turbopump operating with 

kerosene as a lubricant.  Since a closed loop kerosene system was not available for the 

testing, water was used in its place.  From the kinematic viscosities in Table 10, 

kerosene is more viscous than water by a factor of 2.1.  However, water is 2.2 times 

more viscous than liquid methane.   

 

Table 10  Comparison of water and kerosene  
Property Water Kerosene Liquid Methane

Temperature (ºC) 40  (104ºF) 40 (104ºF) -165 (-265ºF)
Pressure (bar) 1 (14.5 psia) 1 (14.5 psia) 1 (14.5 psia)

Density (kg/m3) 992.22 (61.942 lbm/ft3) 815.5 (50.912 lbm/ft3) 427.46 (26.686 lbm/ft3)
Dynamic viscosity (μPa-s) 652.98 (0.65298 cP)  1130 (1.13 cP) 126.8 (0.1268 cP)
Kinematic viscosity (cSt) 0.658 1.386 0.297

 
 

Kerosene is more viscous and will have a better performance than water or liquid 

methane.  Predictions confirm this and details can be found in the Appendix.   
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Evaluating the rotational Reynolds numbers gives further insight into the 

differences in lubricating fluid.  The equation for the Reynolds number is [1]: 

ν
bRCΩ

=Re .     (10) 

According to Table 11, the flow is laminar for all the bearings.  However, lower 

viscosity liquid methane has the highest Reynolds numbers.    

 

Table 11  Reynolds numbers for Water, Kerosene, Liquid Methane 
Bearing RPM Water Re Lam/Turb Kerosene Re Lam/Turb Methane Re Lam/Turb

0.27 3000 18 Lam 8 Lam 39 Lam
0.27 3500 21 Lam 10 Lam 46 Lam
0.27 4000 24 Lam 11 Lam 52 Lam
0.27 4500 26 Lam 13 Lam 59 Lam

0.51 3000 22 Lam 10 Lam 48 Lam
0.51 3500 25 Lam 12 Lam 56 Lam
0.51 4000 29 Lam 14 Lam 64 Lam
0.51 4500 32 Lam 15 Lam 72 Lam
0.69 3000 37 Lam 18 Lam 83 Lam
0.69 3500 44 Lam 21 Lam 97 Lam
0.69 4000 50 Lam 24 Lam 110 Lam
0.69 4500 56 Lam 27 Lam 124 Lam
HHB 3000 11 Lam 5 Lam 24 Lam
HHB 3500 13 Lam 6 Lam 29 Lam
HHB 4000 15 Lam 7 Lam 33 Lam
HHB 4500 17 Lam 8 Lam 37 Lam
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SUMMARY 

 

Several different methods for detection of lift-off speeds were performed in these 

experiments.  The most basic method is to evaluate the shaft centerline plots and view 

the upward motion of the shaft.  A measured bearing clearance is required to determine 

the lift-off speed.  The main problem with this method is that there can be uncertainties 

not only in the motion of the shaft but also in the measured bearing clearance.   

The next method, which proved more reliable, was to look at the vibration 

frequencies of the bearing housing as the shaft accelerates.  Accelerometers on the 

bearing housing showed supersynchronous frequencies that dropped off as the shaft 

lifted upwards.  When comparing these frequencies to running speed, it was difficult to 

ascertain the exact speed of lift-off.  Several high-level frequencies developed but did 

not all drop off at the same time consistently.   

The final method and the one selected for determination of lift-off speed, was to 

measure the voltage across a resistor in a shaft circuit.  When the shaft lifted off, the 

voltage drop across the resistor was significant enough to give a consistent lift-off speed 

measurement.  Problems with this method include noise in the shaft circuit and 

assumptions as to when to consider the shaft fully lifted off.  Since the shaft may initially 

lift up slightly then fall back in contact, the exact lift-off point was defined to be the 

point where the voltage dropped 0.05 volts from the mean value for at least 8 ms.  This 

point was chosen as a conservative estimate to yield consistent results regardless of the 

noise in the signal.   Future experiments may wish to refine these assumptions. 
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CONCLUSIONS 

 
In comparison to load-capacity-based predictions for FPBs, the experimental 

results showed lower lift-off speeds, higher load capacities, higher eccentricity ratios, 

and lower attitude angles.  Load capacity does appear to affect lift-off speed but no clear 

trend was found.  Hence, lift-off speed is poorly predicted from load capacity.   

Some factors that future experiments need to consider are pressure dependency 

and design speed.  The design speed is the maximum running speed achieved for a 

particular test run.  The FPBs unexpectedly proved to be highly pressure dependent due 

to an end-seal phenomenon.  Since the HHB is also pressure dependent, changing design 

speeds with linearly increasing force and pressure profiles was difficult to perform 

consistently.  In these experiments, increasing design speed also increased the 

acceleration of the shaft.   

Another difficultly arose in the form of orientation.  Due to the design of the 

bearing housing, the HHB could only be placed in the LOP position and the FPB in the 

LBP position.  External loads were applied to the shaft for the HHB test cases to 

compare the LBP positions for both bearings.   

The HHB showed greater load capacity and lower eccentricities than the FPBs, 

but the FPBs had lower lift-off speeds and attitude angles.  This comparison is for a 

0.689 bar supply pressure and 3000 rpm design speed.  At this supply pressure and 

considering the shaft weight-only case, the FPB in the LBP orientation had much lower 

lift-off speeds than the HHB in the  LOP orientation.  Increasing the supply pressure to 

the HHB decreased its lift-off speed to much lower levels.  Hence, for lower supply 

pressures, the FPB outperformed the HHB in terms of lift-off speed.  If the load capacity 

needed in the bearing application remains relatively small, a FPB could replace an HHB.   
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APPENDIX 
 

The pad web is assumed to be a beam to determine the rotational web stiffness of 

each pad on the FPB.  With the beam defined according to Fig. 47, Eqs. 11 and 12 can 

be used to the rotational web stiffness.     

 

 
Fig. 47:  Simple beam definition 

 

12

3bLI =     (11) 
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=θ            (12) 

 

Table 12 shows the measured bearing web geometry and calculated stiffness.  Since Kθ  

is below 1000 N-m/rad, the bearing should behave as a TPB [5].   

 

Table 12  Beam calculation results 

Parameter Value Units
b 0.508 (0.02) mm (in)
h 1.905 (0.075) mm (in)
L 38.1 (1.5) mm (in)
E 110.3 (16) MPa (ksi)

K θ 542 (4800) N-m/rad (lb-in/rad)
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Table 13  Test matrix 

Case Preload
Max speed 

(rpm)
Load 

Orientation

Supply 
Pres. 
(bar)

Supply 
Pres. 
(psi)

Max unit 
load 
(bar)

Max unit 
load 
(psi)

1 0.27 3000 LBP 0.689 10 0.135 1.96
2 0.27 3000 LBP 2.76 40 0.745 10.80
3 0.27 3000 LBP 5.52 80 1.380 20.01
4 0.27 3000 LBP 0.689 10 0.135 1.96
5 0.27 3000 LBP 2.76 40 0.745 10.80
6 0.27 3000 LBP 5.52 80 1.380 20.01
7 0.27 3000 LBP 0.689 10 0.135 1.96
8 0.27 3000 LBP 2.76 40 0.745 10.80
9 0.27 3000 LBP 5.52 80 1.380 20.01
10 0.51 3000 LBP 0.689 10 0.135 1.96
11 0.51 3000 LBP 2.76 40 0.745 10.80
12 0.51 3000 LBP 5.52 80 1.380 20.01
13 0.51 3000 LBP 0.689 10 0.135 1.96
14 0.51 3000 LBP 2.76 40 0.745 10.80
15 0.51 3000 LBP 5.52 80 1.380 20.01
16 0.51 3000 LBP 0.689 10 0.135 1.96
17 0.51 3000 LBP 2.76 40 0.745 10.80
18 0.51 3000 LBP 5.52 80 1.380 20.01
19 0.69 3000 LBP 0.689 10 0.135 1.96
20 0.69 3000 LBP 2.76 40 0.745 10.80
21 0.69 3000 LBP 5.52 80 1.380 20.01
22 0.69 3000 LBP 0.689 10 0.135 1.96
23 0.69 3000 LBP 2.76 40 0.745 10.80
24 0.69 3000 LBP 5.52 80 1.380 20.01
25 0.69 3000 LBP 0.689 10 0.135 1.96
26 0.69 3000 LBP 2.76 40 0.745 10.80
27 0.69 3000 LBP 5.52 80 1.380 20.01
28 HHB 3000 LBP 0.689 10 0.135 1.96
29 HHB 3000 LBP 2.76 40 0.745 10.80
30 HHB 3000 LBP 5.52 80 1.380 20.01
31 HHB 3000 LBP 0.689 10 0.135 1.96
32 HHB 3000 LBP 2.76 40 0.745 10.80
33 HHB 3000 LBP 5.52 80 1.380 20.01
34 HHB 3000 LBP 0.689 10 0.135 1.96
35 HHB 3000 LBP 2.76 40 0.745 10.80
36 HHB 3000 LBP 5.52 80 1.380 20.01
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Supplemental figures 
 

 
Fig. 48  Maximum unit load supported for 0.745 bar linearly increasing unit load 

 
 

 
Fig. 49  Eccentricity ratio at 3000 rpm for various preloads compared to 

predictions 
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Comparison of water, kerosene, and liquid methane 
 

Since water is not the actual fluid that will be used in a turbopump application, it 

remains to be seen how changing the working fluid would change the system.  A 

comparison of the predictions between water and kerosene follows.  The experimental 

results for water indicate that the predictions for water will give a reasonable estimate as 

to its actual performance.  Lift-off speeds for both water and kerosene are compared for 

various preloads in Fig. 50. 

   

 
Fig. 50  Predicted lift-off comparison between water and kerosene (for constant Cb) 
 

Kerosene has significantly lower predicted lift-off speeds than water.  The increased 

viscosity of kerosene here seems to have a beneficial effect as lower lift-off speeds mean 

less bearing rub and resulting wear.   

 Next, the maximum load for FPBs for different lubricating fluids are compared.  

The results of this simulation can be found in Fig. 51.   
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Fig. 51  Predicted max unit load comparison between water and kerosene (for a 

constant Cb)  
 

Kerosene demonstrates higher load capacities for each bearing.  Again, this effect would 

be beneficial to bearing operation.  The effect on eccentricity ratios is shown in Fig. 52.   

 

 
Fig. 52  Comparison of predicted eccentricity ratios between water and kerosene 

(for a constant Cb) 
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The lower eccentricity ratios for kerosene, in comparison with water, means that the 

shaft operates closer to the center of the bearing.  Attitude angle comparisons in Fig. 53 

show the kerosene having a slightly larger attitude angle than water.  This confirms the 

predictions from the eccentricity ratios, indicating that the fluid film thickness in 

kerosene is larger than in water.     

 

 
Fig. 53  Comparison of predicted attitude angle for water and kerosene (m = 0.51, 

0.745 bar unit load, constant Cb) 
 

From the previous simulated results, a kerosene-lubricated bearing would have an lower 

lift-off speed, higher load capacity, and higher shaft center operating position.  

Extrapolating these predictions to include liquid methane indicates that liquid methane 

would perform more poorly than both water and kerosene, since liquid methane has a 

kinematic viscosity 2.2 times smaller than water.    
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